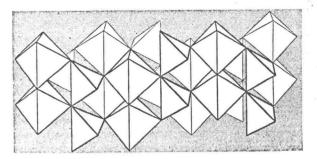
A, whereas those to  $O_I^{2-}$  are the shortest ones:  $Ga_I-O_I = 1.80$  A and  $Ga_{II}-O_I = 1.95$  A(2). The  $Ga_I - O_{II}$  distance 1.83 A is equal to the average  $Ga_I-O$  distance, but the  $Ga_{II}-O_{II}$  distance, 1.95 A, is 0.05 A shorter than the average  $Ga_{II}-O$  distance. Thus the sum of the bond numbers of the bonds to an  $O_{II}^{2-}$  ion is somewhat greater than two, but not importantly so (see footnote reference 20).


Actually, the statistical calculation tells us that: there are no significant differences in Ga<sub>I</sub>-O distances, nor in the Ga<sub>II</sub>-O<sub>I</sub> and Ga<sub>II</sub>-O<sub>II</sub> distances, nor in the two Ga<sub>II</sub>-O<sub>II</sub> distances. The shorter Ga<sub>II</sub>-O<sub>III</sub> distance is only possibly significantly different from the Ga<sub>II</sub>-O<sub>I</sub> and Ga<sub>II</sub>-O<sub>II</sub> distances. However the long Ga<sub>II</sub>-O<sub>III</sub> distance is significantly larger than the shortest distances. Unfortunately, the oxygen ions contribute little to the intensities in comparison with gallium ions and it is unlikely that much greater reliability can be attained even from more accurate intensity data. Also it would appear to be quite difficult to obtain crystals of the aluminum isomorph designated as  $\theta$ -Al<sub>2</sub>O<sub>3</sub><sup>19,20</sup>; none have as yet been reported.

Nevertheless, the aforementioned criterion defined by Pauling<sup>18</sup> indicates that the oxygen polyhedra must be irregular and therefore that the calculated distances are perhaps better than indicated by the standard deviations.

## DISCUSSION

## 1. Comparison with $\alpha$ -Corundum Structure

The  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> structure (Figs. 1 and 2) appears to be quite different from that of  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> which has the  $\alpha$ corundum structure. The latter has the oxygen ions in approximately hexagonal close-packed array with all the Ga<sup>3+</sup> ions octahedrally coordinated to O<sup>2-</sup> ions. Also in the  $\alpha$  phase, octahedra share edges and faces



ch

hin

Ira

of

12-

ra-

ar,

ist, at

hce

at

hot

est

.02

Fig. 1. Perspective view of the arrangement of the oxygen octahedra and tetrahedra in  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>.

<sup>19</sup> H. C. Stumpf, A. S. Russell, J. W. Newsome, and C. M. Tucker, Ind. Eng. Chem. 42, 1398 (1950).
<sup>20</sup> The lattice constants of this phase derived by the present

<sup>20</sup> The lattice constants of this phase derived by the present author from the powder data given by Stumpf *et al.*<sup>19</sup> are  $\iota$ =  $11.83\pm0.02$ ,  $b=2.92\pm0.01$ ,  $c=5.64\pm0.01$  A, and  $\beta=104.0\pm$ ..5°. The powder data, however, are not completely correct, the most outstanding discrepancy being that of  $d_{001}$  which should be 5.47 A as against the reported 5.25 A. Also it is possible that some observable lines have been omitted; one of these is the [401] reflection.

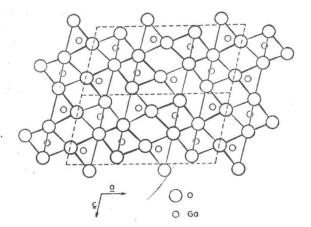



FIG. 2. Plan view of the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> structure. Lines connecting atoms indicate the manner in which the octahedra and tetrahedra are constructed from and joined by the oxygen atoms in the three consecutive symmetry planes. Only the upper faces of the polyhedra are depicted. For increased clarity, this figure should be studied simultaneously with Fig. 1.

which brings the metal ions very near each other. Accurate atomic positional parameters for  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> have not been determined. However, in Fe<sub>2</sub>O<sub>3</sub>,<sup>1</sup> the closest approach of two Fe<sup>3+</sup> ions through a shared octahedral face is 2.88 A and through a shared edge 2.96 A.<sup>21</sup> In  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> no faces are shared between polyhedra and the shortest Ga<sup>3+</sup>-Ga<sup>3+</sup> distance is 3.04 A.

Now it is recognized that usually structures in which faces of polyhedra are shared are less stable than those in which edges are shared, which in turn are less stable than structures in which only corners are shared.<sup>18</sup> Thus, one would expect the  $\beta$  phase to be more stable than the  $\alpha$  phase. Foster and Stumpf have shown<sup>10</sup> that although the  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> forms at lower temperatures than does  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>, the  $\alpha$  phase is metastable. In the case of alumina, it appears that the  $\alpha$  phase forms at higher temperatures than the  $\theta$  (isostructural with  $\beta$ - $Ga_2O_3$ ) just the reverse of the gallia. Yet it appears that although seen rarely in comparison with the  $\alpha$  phase, the  $\theta$ -Al<sub>2</sub>O<sub>3</sub> is the thermodynamically stable phase at room temperature<sup>19</sup> and that although  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> is thermodynamically metastable at room temperature the  $\alpha \rightarrow \theta$  transition of Al<sub>2</sub>O<sub>3</sub> is "infinitely" sluggish at such temperature.

As one might expect, the lower average coordination in the  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> is accompanied by a lower density; the volumes per Ga<sub>2</sub>O<sub>3</sub> in the  $\alpha$  and  $\beta$  phases are 47.8 and 52.8 A<sup>3</sup>, respectively.

<sup>&</sup>lt;sup>21</sup> Recent accurate work on Ti<sub>2</sub>O<sub>3</sub> and V<sub>2</sub>O<sub>3</sub> by Nordmark<sup>22</sup> has led to the Me-Me distances: 2.55 and 2.64 A, respectively, across the shared face and 2.99 and 2.88 A, respectively, across the shared edge. In any case, the closest approach of Ga<sup>3+</sup> ions in  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> is substantially greater than that of the metal ions in any of the  $\alpha$  phases. <sup>22</sup> C. Nordmark, in Final Technical Report, "Studies on the

<sup>&</sup>lt;sup>22</sup> C. Nordmark, in Final Technical Report, "Studies on the crystal chemistry of titanium, vanadium and molybdenum oxides at elevated temperatures" by A. Magnéli *et al.*, University of Stockholm (October, 1959), p. 16. See also R. E. Newnham and Y. M. de Haan, American Crystallographic Association Meeting, Washington, D. C., January, 1960, Paper No. D-5.